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ABSTRACT: Frictional effects due to the chain itself, rather
than the solvent, may have a significant effect on protein
dynamics. Experimentally, such “internal friction” has been
investigated by studying folding or binding kinetics at varying
solvent viscosity; however, the molecular origin of these effects
is hard to pinpoint. We consider the kinetics of disordered
glycine-serine and α-helix forming alanine peptides and a
coarse-grained protein folding model in explicit-solvent
molecular dynamics simulations. By varying the solvent mass
over more than two orders of magnitude, we alter only the
solvent viscosity and not the folding free energy. Folding dynamics at the near-vanishing solvent viscosities accessible by this
approach suggests that solvent and internal friction effects are intrinsically entangled. This finding is rationalized by calculation of
the polymer end-to-end distance dynamics from a Rouse model that includes internal friction. An analysis of the friction profile
along different reaction coordinates, extracted from the simulation data, demonstrates that internal as well as solvent friction
varies substantially along the folding pathways and furthermore suggests a connection between friction and the formation of
hydrogen bonds upon folding.

■ INTRODUCTION
It seems intuitively clear that the kinetics of protein folding and
conformational transitions is not dictated by water viscosity
alone but also by internal dissipation processes. In essence, if
one could experimentally lower the viscosity of water without
changing the folding free energy landscape, one wouldfor
large enough proteins and in the hypothetical limit of vanishing
solvent viscositystill expect folding to be diffusive but with a
diffusivity entirely determined by the internal friction of the
protein. Apart from early stopped-flow studies on ribonuclease
A,1 the majority of experiments have demonstrated kinetic
slowing down with increasing solvent viscosity: In a
spectroscopic study on the folding of the α-subunit of
tryptophan synthase, the folding rate was found to scale
inversely with increased solvent viscosity, confirming that the
rate-limiting step involves a solvent-dominated diffusional
process, but the extrapolation to vanishing solvent viscosity
resulted in a negligible folding time, therefore no indication of
internal friction,2 in agreement with more recent studies on
protein L.3 A study on the conformational relaxation following
CO photodissociation in myoglobin on the other hand yielded
a substantial viscosity-independent component upon extrap-
olation to vanishing solvent viscosity.4 For various proteins that
essentially fold downhill in the μs range close to the “speed
limit”, the existence of a nonzero internal friction was

confirmed,5−7 showing that folding over low barriers is
particularly susceptible to internal friction effects;8 internal
friction has only been observed in one case for a larger protein.9

Likewise, the loop formation dynamics of intrinsically
disordered short peptides was found to be dramatically slowed
down with added viscosifier.10,11 In a particularly revealing
study, the kinetics of α-helix and β-hairpin formation in two
short model peptides was studied by laser temperature jumps
and fluorescence detection:12 The data were compared with
two different laws for the folding time as a function of solvent
viscosity: a pure power law predicting infinitely fast folding at
vanishing solvent viscosity, and a linear law with a finite limiting
folding time. Both forms essentially described the data equally
well, partly reflecting the restricted available data range, since
the aqueous solvent viscosity can experimentally not be lowered
but only increased by the addition of viscogenic cosolutes. With
the exception of very few protein studies,7 the unwanted effects
of viscogens on equilibrium properties cannot be excluded,
which is particularly disturbing since denaturants (that are
commonly added to counteract the stabilization due to
viscogens) have also been shown to influence the peptide
chain dynamics.13
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In an effort to assist and interpret these experimental efforts,
Langevin simulations of protein folding in implicit solvent were
performed.14−16 As solvent friction is reduced, folding times
decrease linearly with viscosity, as expected. But for viscosities
orders of magnitude less than water, the functional dependence
changes,15 and eventually a turnover is observed, leading to a
counterintuitive decrease of folding rate with decreasing
viscosity.14,16 This turnover is related to suppressed momentum
dissipation into the Langevin heat bath at low friction17 but
presumably has no experimental relevance. Apart from this, the
main drawback of standard implicit solvent simulations is that
viscous damping, which mimics the solvent, acts in the same
way on all residues, regardless of whether they face the solvent
or are in the protein interior.18 The decrease of the importance
of solvent friction as one goes from disordered, solvent-rich
conformations to compact structures is therefore not fully
accounted for in such models. In explicit solvent simulations,
on the other hand, mass rescaling provides a simple method for
modifying the water viscosity: changing the water mass by a
scaling factor c, the inertial force F following from Newton’s
equation of motion is invariant when simultaneously rescaling
time by a factor √c,
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meaning that at reduced water mass, all transport properties are
accelerated, and in particular viscosity is reduced. By
construction, equilibrium properties and therefore free energies
are not influenced; consequently, this trick has previously been
used to accelerate the equilibration of protein simulations in
explicit solvent.19,20 In the present paper we employ this
procedure to study the viscosity-dependent kinetics of short
peptides and a two-state protein, changing the solvent mass by
more than two orders magnitude and in particular reaching the
relevant regime of reduced solvent viscosities. Note that the
modification of water mass in our simulation has no relation to
the experimental distinction between normal and heavy water
and is simply a trick to modify the viscosity of water. Since by
changing the water mass all time scales are shifted, small solvent
friction is accompanied by high heat conductivity, and therefore
Kramer’s turnover is not expected, suggesting that our
simulation approach more closely captures the essence of
experiments at modified solvent viscosity. Our simulations
show clearly that internal friction effects exist. The separation
into internal and solvent friction is nevertheless not

straightforward, even when we locally resolve the friction
profile along different reaction coordinates,21,22 and although in
simulations, we can substantially reduce the solvent viscosity.
Historically, the concept of internal friction arose for

polymers in the context of dissipation due to the thermally
activated crossing of dihedral barriers.23 Shortly after, an
alternative mechanism based on contacts between monomers
that are not necessarily close neighbors along the backbone was
suggested.24 These contacts can be attractive (hydrogen bonds
(HBs) are obvious candidates for this type) or steric and thus
purely repulsive, giving rise to considerable kinetic slowing
down in polymeric globules.25 While local friction, e.g., due to
dihedral barriers constitutes only a small correction to the long-
time chain relaxation, it can be dominant at short times or for
strongly stretched biopolymers.26,27 Using a simple Rouse
model that incorporates local internal friction, we show that the
mean passage time for an incremental change of the end-to-end
distance depends nontrivially on the solvent viscosity,
exhibiting both linear as well as power-law behavior, depending
on the relative strength of internal and solvent friction but
always showing a nonzero folding time at vanishing solvent
viscosity. The scaling form provided by the Rouse polymer
model fits our simulation data quite well. Although protein
kinetics is more complicated, involving also steric and HB
effects, our Rouse model calculation is a first step toward
understanding the complex entanglement of internal and
solvent friction effects and rationalizes the occurrence of
power laws for folding times as a function of solvent viscosity.

■ SIMULATION DETAILS

Our explicit water molecular dynamics simulations use the
GROMACS28 simulation package version 4.5, Amber ff03 force
field,29 and SPC/E water30 model. In these simulations the
presence of intrapeptide as well as peptide−water HBs is
explicitly accounted for. The box size is 3.14 nm with 688 water
molecules for Ala8 and 3.18 nm with 711 water molecules for
(GlySer)4. Simulation times range up to 4 μs, pressure is set to
1 bar using a Parrinello−Rahman barostat,31 and temperature
to 300 K using a velocity rescaling thermostat.32 The heat bath
in our MD simulations couples to the average velocity in the
simulation box32 and therefore is expected to modify the
dynamics only negligibly, in contrast to standard Langevin
simulations. The different water masses used are between m/m0
= 0.01 and 9, where m0 denotes the standard water mass, and
the integration time step has been adjusted accordingly. In

Figure 1. (A) Trajectories of the end-to-end distance Qee
GS4 for (GlySer)4 for the lowest and the highest water viscosities considered in our

simulations, η/η0 = 0.1 and 3. (B) Free energy βF(Q) as a function of the end-to-end radius Qee
GS4 (blue lines) and radius of gyration Qgyr

GS4 (green
lines) for the unstructured peptide (GlySer)4 for all different viscosities. (C) Free energy βF(Q) for the helix-forming peptide Ala8, here in addition
results are plotted as a function of the rms deviation from the perfect helical state, qrms

Ala8 (red lines). (D) Mean first-passage times τfp
GS4(Qee,Qee

f ) in
terms of the end-to-end distance for final position Qee

f = 0.5 nm. (E) τfp
A8(Qee,Qee

f ) for the final position Qee
f = 1.05 nm.
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order to also treat larger proteins, we additionally perform
simulations using a coarse-grained Go-type model for a 47-
residue protein in explicit coarse-grained solvent (for further
simulation details, see Supporting Information text).

■ RESULTS AND DISCUSSION

Simulations at Varying Water Mass. To study the effects
of solvent viscosity on peptide dynamics, we consider two
simple, eight amino acid peptides. The first, a (GlySer)4 chain,
is unstructured and has been widely studied experimentally,10

the second is the helix forming peptide Ala8; both peptide
termini are capped. By changing the mass of water in the
simulations, the water viscosity varies between η/η0 = (m/
m0)

1/2 = 0.1 and η/η0 = 3. In Figure 1A we show the fluctuating
end-to-end distance Qee

GS4 (defined as the distance between the
terminal amino acids) for (GlySer)4 for the lowest and the
highest viscosities, η/η0 = 0.1 and 3, as a function of time,
illustrating the clear difference in dynamics. In Figure 1B we
show the free energy βF(Q) = −ln P(Q), which follows from
the averaged probability distribution P(Q), as a function of
Qee

GS4 (blue lines) and radius of gyration Qgyr
GS4 (green lines) for

(GlySer)4 for all different viscosities. Note that q variables
denote rescaled versions of the original Q, mapping the domain
between the smallest and the largest observed reaction
coordinate (RC) values Q onto the interval q = [0,1] and
that P(q) is normalized as ∫ 0

1dqP(q) = 1. Figure 1C displays
βF(Q) for Ala8, where in addition to qee

Ala8 (blue lines), qgyr
Ala8

(green lines), we show F as a function of the root-mean-square
(rms) deviation from the perfect helical state, qrms

Ala8 (red lines).
We note that the free energy profiles for each RC and different
water viscosities for both peptides agree closely with each other,
thus matching our expectation that solvent viscosity does not
influence equilibrium properties and in addition showing that
our simulations are well equilibrated. The (GlySer)4 free energy
profiles are rather broad and reflect the lack of ordered
structure, while the Ala8 profiles exhibit pronounced minima
corresponding to the folded α-helical state. A quantitative
analysis of how solvent viscosity influences the peptide kinetics
is possible by computing mean first-passage times τfp(Q,Q

f),
which measure how long it takes, starting from a given position
Q along the RC, to reach the final state Qf for the first time. In
Figure 1D we show τfp

GS4(Qee,Qee
f ) for the end-to-end distance

for the final position Qee
f = 0.5 nm, and in Figure 1E we show

τfp
A8(Qee,Qee

f ) for the final position Qee
f = 1.05 nm. The final

positions are in both cases chosen as convenient (i.e.,
statistically prominent) product states in a prototypical folding
reaction starting from Qee > Qee

f . As already suggested by the
trajectories in (Figure 1A), the folding becomes slower with
increasing viscosity and is fully confirmed by the results for the
mean first-passage times for different water viscosities. A
convenient and well-equilibrated measure for the folding speed
is the Boltzmann-averaged mean first-passage time:

∫ ∫τ̅ = τ
∞ ∞

Q QP Q Q Q QP Q( ) d ( ) ( , )/ d ( )
Q Qfp

f
fp

f
f f (2)

If the solvent viscosity η were the only time scale in the folding
kinetics, the ratio τf̅p/(η/η0) would be independent of η/η0.
The results in Figure 2A for the end-to-end distance of the
(GlySer)4 (blue) and Ala8 peptides (red data points) exhibit a
pronounced decrease of the rescaled folding time τf̅p/(η/η0)
with η/η0. Thus, the folding time τf̅p decreases sublinearly with
η/η0 as η/η0 → 0, proving that finite internal friction exists both

for the folding of (GlySer)4 as well as Ala8. Testing the
relevance of the peptide dynamics to proteins is challenging
because of the computational demands, even for the fastest-
folding proteins. We therefore use instead a coarse-grained Go-
type model33 of the two-state 47 residue 3-helix bundle protein
1prb7−53

34 with explicit solvent (details in Supporting
Information). Remarkably, we find a very similar nonlinear
dependence of the folding and unfolding rates on viscosity,
revealing a measurable internal friction even in this case. In
Figure 2B−D we plot the averaged folding time τf̅p for
(GlySer)4, Ala8, and the coarse model for protein 1prb7−53 as a
function of the viscosity ratio η/η0 and compare it with two
previously suggested heuristic fitting functions:12

τ̅ = τ + τ η η/fp int wat 0 (3)

and

τ̅ = τ η η α( / )fp 0 0 (4)

While both forms give fits of essentially equivalent quality,
shown as solid and broken lines, only the linear form eq 3
allows a straightforward separation of the folding time into an

Figure 2. (A) Boltzmann-averaged mean first-passage time, eq 2,
rescaled by the solvent viscosity, τf̅p(Q

f)/(η/η0), for the end-to-end
distance of the (GlySer)4 (blue) and Ala8 peptides (red data points), as
a function of η/η0. The data clearly show that folding time is not
proportional to η and therefore internal friction exists. (B) Averaged
folding time τf̅p for (GlySer)4 as a function of the viscosity ratio η/η0.
(C) Analogous results for Ala8. (D) Results for the averaged folding τf̅p

f

(green) and unfolding time τf̅p
u (black) for the protein 1prb7−53 from a

coarse-grained Go-type model. In B−D, fits according to eqs 3 (solid),
4 (broken), and 7 (dotted lines, N = 10 in B and C and N = 47 in D)
are shown. Note that in D, eqs 4 and 7 are almost indistinguishable.
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internal contribution τint, which would be the folding time in
the hypothetical limit of vanishing solvent viscosity η/η0 → 0
and the water contribution τwat, which is the added folding time
due to the presence of water. According to the linear model eq
3, the internal viscosity contribution makes up roughly half of
the total folding time for the two peptides shown in Figure
2B,C, and for the protein in the coarse-grained model in Figure
2D, the internal contribution is much smaller (see Supporting
Information for details). The power law form eq 4 allows no
such separation into internal and solvent contributions to the
folding time, rather introducing an exponent which turns out to
be α = 0.59 for (GlySer)4, α = 0.73 for 1prb7−53, and α = 0.66
for Ala8, quite close to experimental measurements for an α-
helix forming peptide of α = 0.64,12 but at the same time leads
to the nonintuitive extrapolation that folding occurs infinitely
fast as solvent viscosity vanishes. We emphasize that both forms
definitely assume that internal friction exists (otherwise we
would have τf̅p = τ0η/η0), but none is rigorously derived from a
polymeric or protein model. This gap is filled by a Rouse-type
calculation for the passage time of an ideal polymer chain with
internal friction, results of which are shown as dotted lines in
Figure 2B−D.
Passage Times from Rouse Model including Internal

Friction. In the standard Rouse model for polymer dynamics,
N connected beads at positions Rn with n = 1, ..., N are subject
to friction forces −ξmdRn/dt that counteract bead motion
proportional to the monomeric Stokes friction coefficient ξm =
6πηa, where a is the effective bead radius. The simplest
mechanism for internal friction is bond friction that acts on the
bond vector Rn − Rn−1 in the form of a force proportional to
the bond stretching velocity, −ξbd(Rn − Rn−1)/dt, where ξb is
the bond friction coefficient that, to leading order, is
independent of the solvent viscosity and only depends on
dissipative processes within the polymer (e.g., due to dihedral
barriers). Since each monomer participates in two bonds, the
Langevin equation of motion takes in the continuum limit the
symmetric form24,27

ξ = κ + ξ +n t t n n nR R fd ( )/d ( d/d )d ( )/d ( )m b
2 2

(5)

where κ ∼ kBT/a
2 is a spring constant ensuring an equilibrium

bond length ∼ a and f(n) is a vectorial Gaussian random force.
By normal-mode decomposition, eq 5 can be solved in closed
form, and the final result for the autocorrelation function of the
mean-squared end-to-end distance Cee(t) = ⟨(Ree(t) −
Ree(0))

2⟩/⟨Ree
2 ⟩, with Ree = R(N) − R(0), is27 (see Supporting

Information for full details of the calculation)

∑= − − τC t C p( ) (1 e )/
p

N
t

ee 0
/ 2p

(6)

Here C0 is a normalization constant so that Cee(∞) = 1, the
sum runs over odd mode numbers p only, and the mode
relaxation time is τp = N2τm/p

2 + τb, where we have defined the
monomer relaxation time τm = ξm/(π

2κ) and the bond
relaxation time τb = ξb/κ. For large times, Cee(t) approaches
unity exponentially, Cee(t) ∼ 1 − exp(−t/(N2τm + τb)), where
N2τm is the polymeric or Rouse relaxation time. For
intermediate times, in the so-called Rouse regime, Cee(t)
grows as a power law, Cee(t) ∼ (t/τm)

1/2/N. Most relevant for
the present discussion based on the scenario of a protein
diffusing in a 1D free energy landscape is the diffusive regime at
short times, where we find three separate scaling ranges,

depending on the relative strength of monomer and bond time
scales: Cee(t) ∼ t/τb for dominating internal friction N2τm < τb,
Cee(t) ∼ t/(N(τbτm)

1/2) for intermediate internal friction τm <
τb < N2τm, and Cee(t) ∼ t/(Nτm) for negligible internal friction
τb < τm (see Supporting Information text). To connect to our
simulation results for folding times, we define a mean passage
time τmp by the condition that Cee has reached a certain
threshold value, Cee(τmp) ≡ Cee* , with Cee* chosen small enough
so that one stays in the diffusive regime. A scaling function that
contains all three regimes and accurately reproduces the
numerical evaluation of eq 6 is τmp/Cee* = C1τb + C2N(τbτm)

1/2 +
C3Nτm (see Supporting Information text). The coefficients for
Cee* = 0.01 and N = 10 are C1 = 1, C2 = 0.9, and C3 = 2.1.
Assuming a linear relation between τm and η as τm = τm

0 η/η0,
where τm

0 is defined as the monomer relaxation time at
reference solvent viscosity η = η0, we obtain

τ * τ = +
τ
τ

η
η

+
τ
τ

η
η

C C C N C N/( )mp ee b 1 2
m
0

b 0
3

m
0

b 0 (7)

We note: (i) eq 7 contains two fitting parameters, an overall
time scale, here, taken to be the bond relaxation time τb, and
the ratio τm

0 /τb between the monomer relaxation time at the
reference solvent viscosity and the bond relaxation time, thus
the number of fitting parameters is the same as in the
previously discussed heuristic fitting forms eqs 3 and 4. (ii) Eq
7 combines key aspects of eqs 3 and 4, namely the folding time
scale reaches a finite value for vanishing η, as in eq 3, and
power-law behavior for intermediate times is obtained, as in eq
4. The resulting fits according to eq 7 in Figure 2B−D (dotted
lines) are of the same quality as the other fits. (iii) For large
chain lengths N, the first term in eq 7 that is independent of
solvent viscosity becomes negligible; this is interesting in light
of the experimental observation that internal friction is more
pronounced for fast-folding (i.e., small) protein or protein
domains,5,6 with only one exception.9

The Rouse model discussed here is very simplified and
neglects many effects and phenomena that are present and
important in the actual peptide or protein dynamics. The main
point of our Rouse model calculation is to demonstrate the
complexity of chain kinetics when the solvent viscosity is varied,
even for the relatively simple case of local internal friction
(mimicking dihedral barrier effects) as defined by eq 5. While
internal and solvent friction effects are additive for the
relaxation time τp = N2τm/p

2 + τb of each individual mode, as
assumed in eq 3, the mode mixing that takes place when a
kinetic observable such as the end-to-end radius is calculated,
gives rise to power-law behavior, as assumed in eq 4. We now
turn back to our more realistic friction scenarios based on
simulations including interactions and HB effects.

Locally Resolved Friction Analysis. Some of the
complexities observed in Figure 2B−D could have to do with
the fact that a folding time integrates over the friction
landscape, while the peptide moves from the starting
configuration to the final configuration, particularly since the
relative weight of internal friction should increase as one goes
from open to more collapsed and hydrogen-bonded structures.7

To look into this, we now resolve the friction profile locally.
Assuming that a given RC evolves according to the Fokker−
Planck equation:35

∂
∂

= ∂
∂ βξ

∂
∂

−β β
t

P Q t
Q Q Q

P Q t( , )
1
( )

e ( , )eF Q F Q( ) ( )
(8)
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where P(Q,t) is the probability of having a configuration with
RC value Q at time t and ξ(Q) is the friction profile. Defining
the round-trip time:

τ = − τ + τQ Q Q Q Q Q Q Q( , ) sign( )[ ( , ) ( , )]rt
f f

fp
f

fp
f

(9)

as the time needed to start at Q, reach Qf for the first time, start
from Qf again, and reach back to Q for the first time, one
finds22

∫τ = ′βξ ′ β ′Q Q Z Q Q( , ) d ( )e
Q

Q F Q
rt

f ( )
f (10)

where Z = ∫ Q
minQmax

dQe−βF(Q) is the partition function which in our
normalization is unity. The friction profile based on the round-
trip time (see Supporting Information text) reads22

βξ =
∂τ ∂

β
Q

Q Q Q

Z
( )

( , )/

e F Q
rt

f

( ) (11)

which in Figure 3A is shown for different solvent viscosities for
(GlySer)4 in terms of the rescaled end-to-end distance

coordinate qee. Indeed, the local friction increases with
increasing η, and in addition, ξ goes up for smaller qee, i.e.,
when the peptide chain becomes more confined.7 When
comparing ξ(qee) at normal water viscosity η/η0 = 1 for
(GlySer)4 (blue line) and Ala8 (red line) in Figure 3B, we see
that Ala8 shows a friction maximum at an intermediate value of
qee ≈ 0.4. This can be compared with the number of
intrapeptide HBs NHB in Figure 3C. HBs are defined according
to the distance−angle criterion that the acceptor−donor−
hydrogen angle θ should be smaller than θ = 30° and the
donor−acceptor distance smaller than 0.35 nm.36 Indeed, the
maximum in ξ at qee ≈ 0.4 for Ala8 roughly matches the

maximum in NHB, corresponding to the helical state; the naive
expectation (which will be rectified below) would be that the
total number of HBs determines local friction, meaning that the
local friction should be high when the number of intrapeptide
HBs is high.
In fact, the end-to-end distance is not the most natural RC to

characterize friction in our two model peptides. Therefore in
Figure 4 we show βξ as a function of the radius of gyration qgyr

for (GlySer)4 and as a function of the rms from the perfect
helical state qrms for Ala8. For a disordered chain like (GlySer)4,
one would expect internal friction to be mainly due to
unspecific intrapeptide HBs and to be increased in the
collapsed state; indeed, ξ plotted versus qgyr shows a
pronounced maximum for small qgyr in Figure 4A (blue solid
line) that is paralleled by a maximum in NHB in Figure 4B (blue
line). Unexpectedly, for Ala8, a pronounced maximum in ξ
appears at qrms ≈ 0.4 (red solid line in Figure 4A) and thus
shifted away from the fully folded state (around qrms ≈ 0.1),
where NHB has saturated to the maximum value. Scrutinizing
NHB for Ala8 in Figure 4B (red line) more closely, one sees that
the maximum in ξA8 around qrms ≈ 0.4 correlates roughly with a
sudden drop of NHB around qrms ≈ 0.45. A possible connection
between friction and variations in NHB is suggested by the
invariance of the Fokker−Planck equation (eq 8) under

Figure 3. (A) Locally resolved friction profiles βξ(qee) for different
solvent viscosities for (GlySer)4 as a function of the rescaled end-to-
end distance qee. (B) βξ(qee) at normal water viscosity η/η0 = 1 for
(GlySer)4 (blue line) and Ala8 (red line). (C) Number of intrapeptide
HBs NHB for (GlySer)4 (blue line) and Ala8 (red line).

Figure 4. (A) Friction profiles βξ (solid lines) and internal
contribution βξint (broken lines) at η/η0 = 1 for (GlySer)4 as a
function of the rescaled radius of gyration qgyr (blue) and for Ala8 as a
function of the rms from the perfect helical state qrms (red).
Representative simulation snapshots are shown at the top. (B)
Corresponding number of intrapeptide hydrogen bonds. (C) βξGS4 for
qgyr = 0.1 and qgyr = 0.2 as a function η/η0. Solid and broken lines
denote linear and power-law fits according to eqs 3 and 4, respectively.
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coordinate rescaling according to Q̃ = Q̃(Q), if the functions Ψ,
F, ξ are simultaneously rescaled as Ψ̃ = Ψ/Q̃′, F̃ = F + β−1 ln Q̃′,
ξ ̃ = ξ/(Q̃′)2, where Q̃′ ≡ dQ̃(Q)/dQ. Thus an arbitrary friction
profile ξ ̃(Q̃) can be designed, including the limiting simple case
of a constant friction ξ ̃(Q̃) = ξ0̃, while the kinetics stays
invariant. Since all observables (and in particular the HB
number NHB) are not modified by the rescaling Q̃ = Q̃(Q), an
explanation of ξ(Q) in terms of equilibrium observables is
spurious. Thus, the friction profile can only be linked to
derivatives, such as dNHB(Q)/dQ, which have similar trans-
formation properties as ξ(Q) itself. Indeed, when comparing
ξA8 in Figure 4A (red line) with NHB

A8 in Figure 4B (red line),
we see that maxima in ξA8 approximately correlate with regions
where NHB

A8 changes pronouncedly with qrms. A mechanistic
interpretation of this would be that HB-related friction is
particularly large when the number of HBs significantly changes
along the RC, i.e., when additional HBs are created, most likely
because formation of non-native HBs results in long-lived
kinetic traps.9 The importance of HBs for internal friction was
clearly pointed out in previous work on the short-time kinetic
energy partitioning in solvated carboxy-myoglobin.37 That
study also found salient differences in internal friction between
various residue types, which is in line with the pronounced
differences we find between the two peptides Ala8 and
(GlySer)4, as clearly demonstrated in Figure 4A. It was
suggested by the same authors that other interactions between
side chains besides the formation of HBs are relevant for the
magnitude and character of internal friction. This suggestion
could in the future be studied by simulations similar to ours but
for a wider collection of different residue types.
Finally, we check whether the local friction profile facilitates

the separation into solvent and internal friction. To that end, in
Figure 4C we plot the friction ξGS4 for qgyr = 0.1 and 0.2 as a
function η/η0. Similar to the averaged mean first passage times
shown in Figure 2B, a linear fit as in eq 3 is possible (solid
lines), but the data show clear signs of curvature, and a power-
law fit according to eq 4 (broken lines) is equally accurate.
Nevertheless, the broken lines in Figure 4A show the internal
friction profiles ξint(q) that are defined via the scaling form:

ξ = ξ + ξ η ηq q q( ) ( ) ( ) /int wat 0 (12)

inspired by eq 3. ξint(q) largely parallels the total friction
profiles ξ(q) (solid lines), but the intuitive expectation that ξint
should dominate in the folded (HB-rich) state, while solvent
friction, i.e., ξ − ξint, should dominate in the unfolded (open)
state is not borne out by the data. This might have to do with
the lack of a rigorous recipe for the division between solvent
and internal friction (stressing again that the linear law in eq 12
is purely heuristic). Alternatively, the similar behavior of the
internal friction profile ξint(q) and the total friction profile ξ(q)
in Figure 4A could have a deeper origin and actually mean that
water indirectly also influences HB-induced internal friction,
possibly because whenever an intrapeptide HB breaks, a water
molecule penetrates and serves as an intermittent HB donor or
acceptor.

■ CONCLUSION

Our simulations clearly show that internal friction effects exist
but at the same time demonstrate that the quantitative
separation into internal and solvent friction is not straightfor-
ward. This is true even when we locally resolve the friction
profile along different RCs,21,22 and even though in simulations

we can substantially reduce the solvent viscosity while making
sure that free-energy folding profiles are not modified as
viscosity changes. This has primarily to do with the lack of a
simple but physically motivated definition of internal friction in
terms of folding times or friction profiles. This complexity is
corroborated by a simple Rouse-type model for the kinetics of a
Gaussian polymer chain including internal local friction, for
which the calculated passage times show power-law and linear
behavior as a function of solvent viscosity, depending on the
internal friction strength and the polymer size N. It is the
polymeric, multiscale nature of the dynamics that gives rise to
the power-law viscosity dependency of time scales in our model
calculation and that turns out to be very similar to our
simulations and to experimental observations of protein folding
times.12 In fact, an alternative explanation for power-law
behavior based on the finite spatial range of spectroscopic
probes has been previously given,38 and in reality both
mechanisms will be entangled.
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